

Self-Biased PLL/DLL

ECG721 60-minute Final Project Presentation

Wenlan Wu Electrical and Computer Engineering University of Nevada Las Vegas

Outline

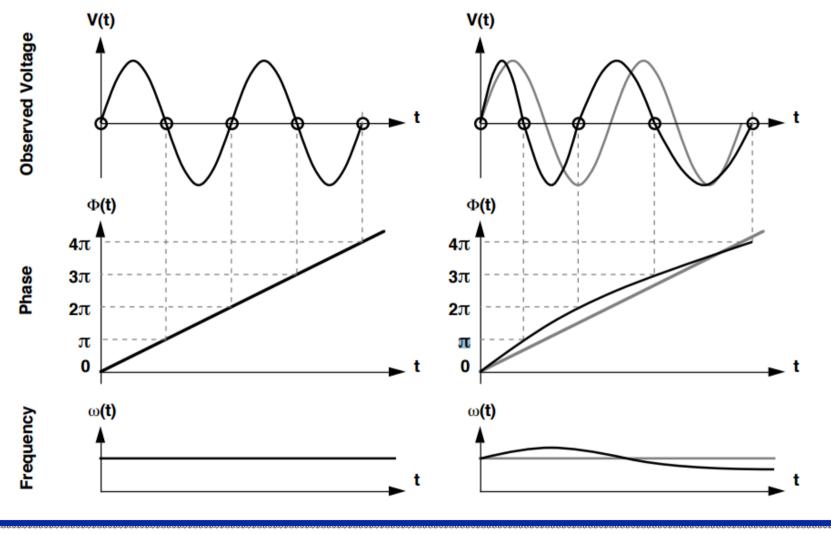
- Motivation
- Self-Biasing Technique
- Differential Buffer Delay
 - Symmetric Load
- Bias Generator
- Self-Biased DLL
 - Zero-offset charge pump
- Self-Biased PLL
 - Feed-forward Zero

Motivation

- High-speed I/O + High-freq. clock signal
- Jitter:

supply and substrate noise process variation

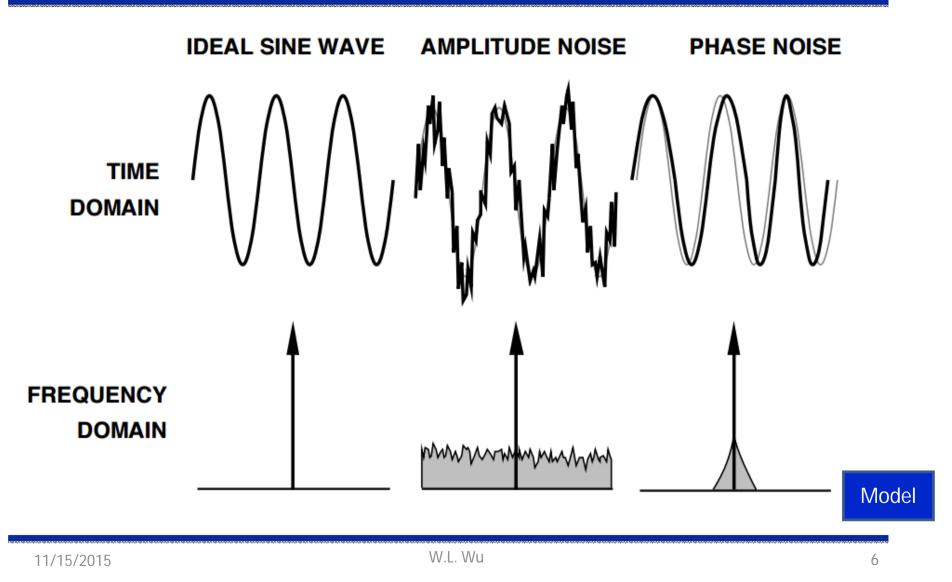
Target: design a low jitter PLL/DLL



Jitter

- Definition: jitter is the deviation from, or displacement of true periodicity of a presumed signal in electronics and telecommunications, often is relation to a reference clock source.
- Jitter can be observed in frequency of successive pulses, the signal amplitude, or phase of periodic signals.

Jitter-Time Domain



11/15/2015

W.L. Wu

Jitter-Freq. Domain

Outline

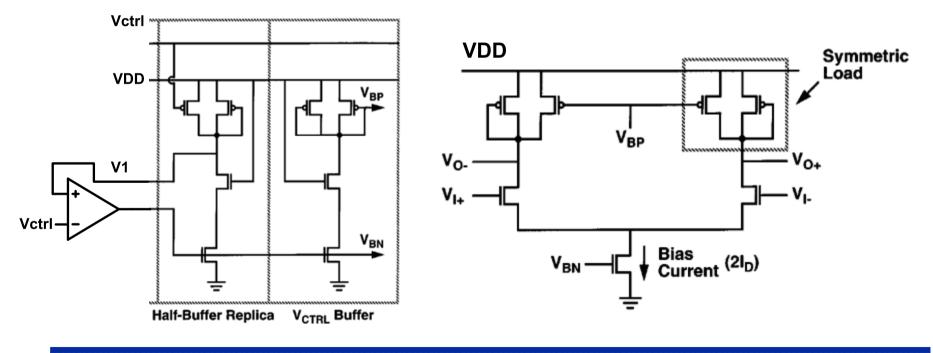
• Motivation

• Self-Biasing Technique

- Differential Buffer Delay
 - Symmetric Load
- Bias Generator
- Self-Biased DLL
 - Zero-offset charge pump
- Self-Biased PLL
 - Feed-forward Zero

- Avoid the need for external biasing circuit
- Allow circuits to choose the operating bias levels in which they function best
- Operating bias levels are essentially established by the operating frequency

- Provide a bandwidth tracking the operating frequency
- Broad frequency range minimized supply and substrate noise
- Fixed damping factor
- Bandwidth to operating frequency ratio is determined by a ratio of capacitances giving effective process technology independence
- No need of external bias circuit



Outline

- Motivation
- Self-Biasing Technique
- Differential Buffer Delay
 - Symmetric Load
- Bias Generator
- Self-Biased DLL
 - Zero-offset charge pump
- Self-Biased PLL
 - Feed-forward Zero

- PLL/DLL needs buffer stage with low noise
- Symmetric load and replica-feedback biasing (half-replica bias circuit)

Symmetric Load

- Diode-connected PMOS in shunt with an equally sized biased PMOS
- Voltage-controlled resistor (Fig.19.57)

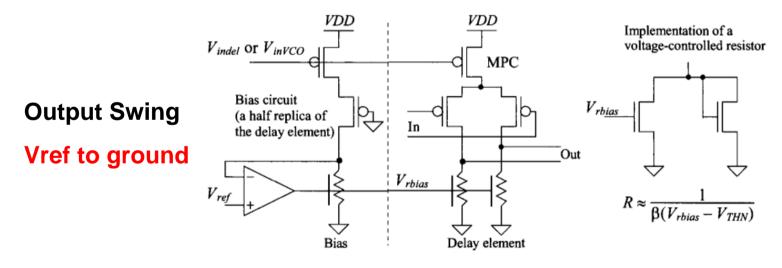
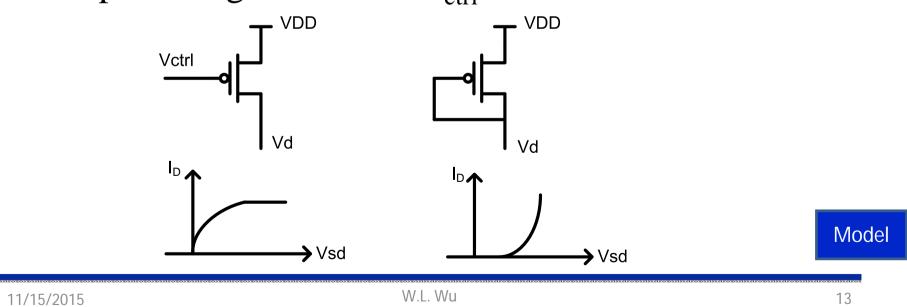
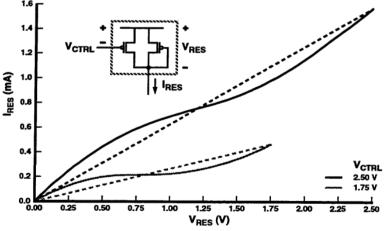



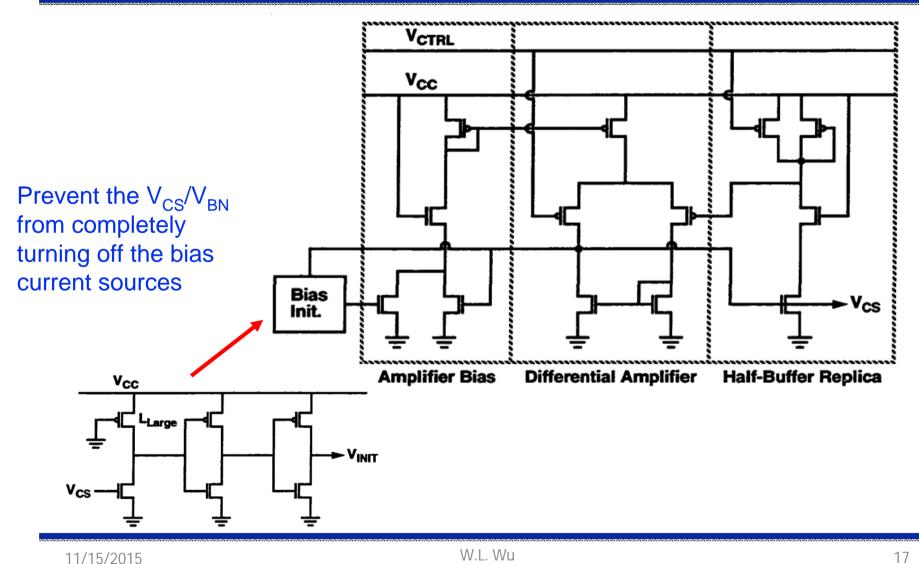
Figure 19.57 A differential delay element based on a voltage-controlled resistor. The bias circuit adjusts the value of the resistors used in the delay elements to sink the current sourced by the p-channel MOSFETs.



- V_{BN} dynamically changing the bias current which is two times of diode-connected PMOS with V_{ctrl} as gate voltage
- Different V_{ctrl} has different bias current
- Output swing is VDD to V_{ctrl}

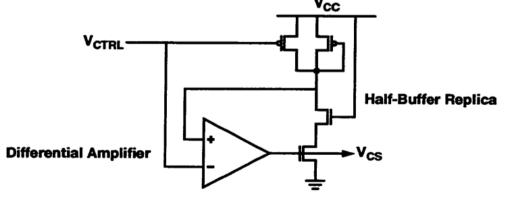
- Load I-V curve is symmetric about the output center voltage
- Effective resistance changes with V_{ctrl}
 →buffer delay changes with the control voltage
- V_{BN} is changed by V_{ctrl} to maintain the symmetric IV characteristics

- Good control delay
- High dynamic supply noise rejection
- V_{BN} can compensate drain and substrate voltage variations by dynamically biasing the NMOS current source
- The layout is very compact



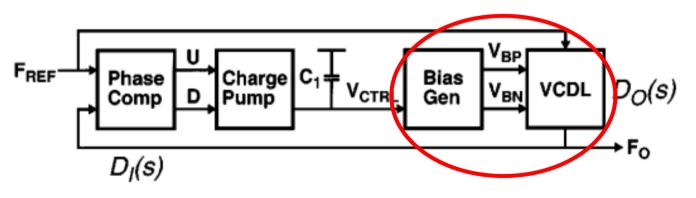
Outline

- Motivation
- Self-Biasing Technique
- Differential Buffer Delay
 - Symmetric Load
- Bias Generator
- Self-Biased DLL
 - Zero-offset charge pump
- Self-Biased PLL
 - Feed-forward Zero



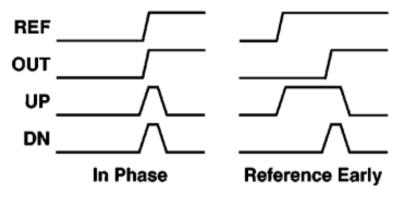
Bias Generator

- V_{BN} and V_{BP} produced by V_{ctrl}
- V_{BN} keeps Bias current for buffer delay (constant and independent of supply voltage) by using a differential amplifier and a half-buffer replica
- V_{BP} : Additional half-buffer replica to provide a buffer of V_{ctrl}

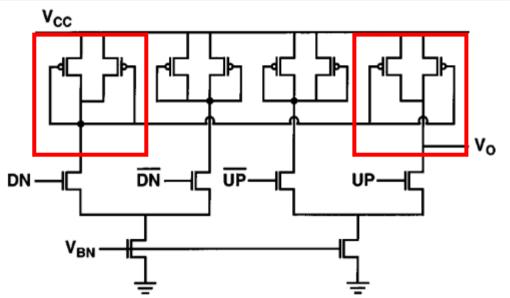

Outline

- Motivation
- Self-Biasing Technique
- Differential Buffer Delay
 - Symmetric Load
- Bias Generator
- Self-Biased DLL
 - Zero-offset charge pump
- Self-Biased PLL
 - Feed-forward Zero

Self-Biased DLL

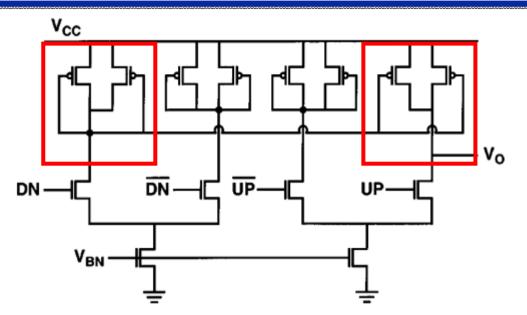

- Phase detector/Phase comparator
- Charge pump
- Loop filter
- Bias generator
- VCDL

- DLL is designed to re-buffer the input clock without adding any effective delay
- PFD detects the phase error between the input and feedback output
- Forward path integrates the phase error and adjust the delay through VCDL
- Once in lock, the VCDL delay is the integer multiple of the input period

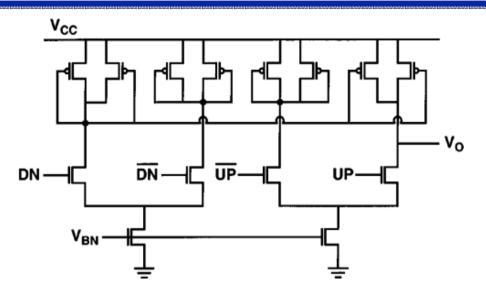


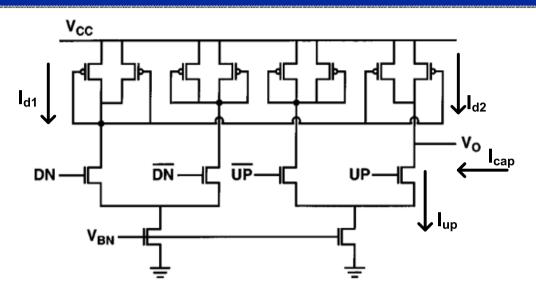
- In-phase inputs requires the UP and DN with an equal and short period of time
- If the inputs of PFD produce no UP or DN pulses, it will take some finite phase difference before a large enough pulse is produced to turn on the charge pump, which leads to a dead-band region

11/15/2015

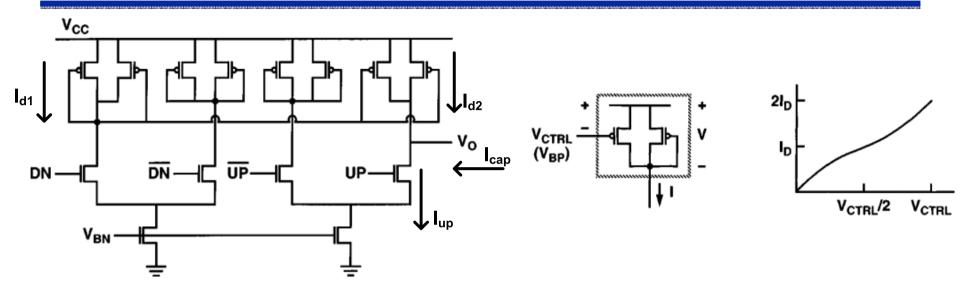


- Produce equal duration of UP and DN outputs when DLL is in lock
- Composed of Two NMOS source coupled pairs with separate same buffer bias current and connected by a current mirror made from symmetric loads

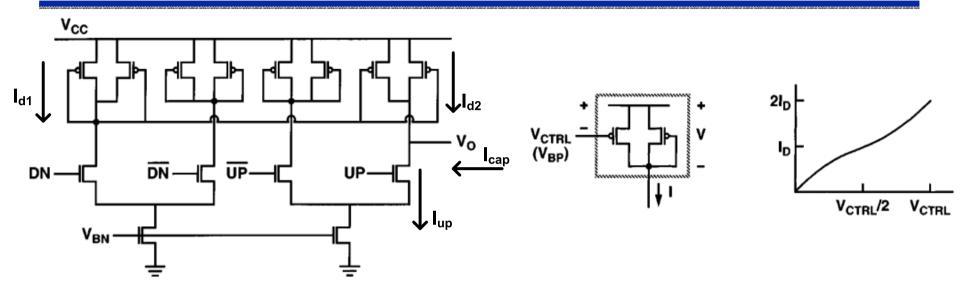

11/15/2015


- The left source-couple pair behaves like halfbuffer replica and produce Vctrl at the current mirror node
- The right PMOS has Vctrl in its gate and drain

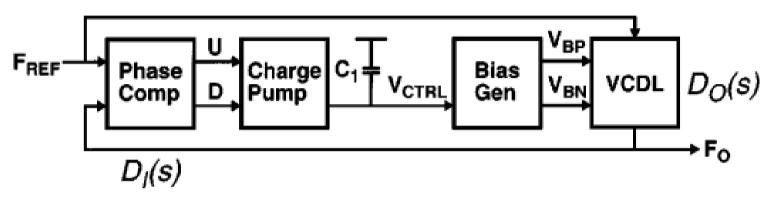
• Zero static phase offset when both the UP and DN outputs of the phase comparator with equal duration on every cycle of in-phase inputs



- $\Delta \omega = \omega_0 \omega_{ref} > 0$, UP pulse is longer than DN pulse. Id1=Id2, Iup>Id2, so Icap will discharge the cap of loop filter, reducing Vctrl.
- $\Delta \omega = \omega_0 \omega_{ref} = 0$, UP and DN outputs for equal durations on every cycle. Id1=Id2=Iup


Zero-offset Charge Pump

• $\Delta \omega = \omega_0 - \omega_{ref} > 0$, smaller Vctrl makes the V_{SG}=VDD-Vctrl larger, which means larger current and smaller effective resistance. Hence, large charge offset leads to reduce the delay or small phase offset \rightarrow Unlocked


Zero-offset Charge Pump

• $\Delta \omega = \omega_0 - \omega_{ref} = 0$, UP and DN outputs for equal durations on every cycle. Vctrl is fixed. The delay is integer multiple of input reference period. \rightarrow Locked

Self-Biased DLL

 $\omega_{o} > \omega_{ref}$: UP longer pulse, discharging C1, reducing Vctrl, larger current, smaller effective resistance, smaller delay

 $\omega_o < \omega_{ref}$: DN longer pulse, charging C1, increasing Vctrl, smaller current, larger effective resistance, larger delay

- Input tracking jitter will be further reduced by setting the loop bandwidth as close as possible to the operating frequency
- The loop bandwidth ω_N is given by

$$\omega_N = I_{CH} * K_{DL} * F_{REF} * \frac{1}{C1}$$

• If charge pump current I_{CH} and VCDL gain K_{DL} are constant, the loop bandwidth will track the operating frequency

- The VCDL gain for a n-stage is given by $K_{DL} = \left| \frac{dD}{dV_{ctrl}} \right| = \frac{C_B}{4*I_D}$ C_B is the total buffer output capacitance for all stages, D is the delay for an n-stage VCDL
- I_{CH} is set equal to the buffer bias current $2*I_D$ cancelling the K_{DL} depending on $1/I_D$ and leading to loop bandwidth that track the operating frequency without constraining the operating frequency range

• I_{CH} can be set to some multiple x of the buffer bias current such that

$$I_{CH} = x * 2I_D$$

• The loop bandwidth to operating freq. ratio is given by

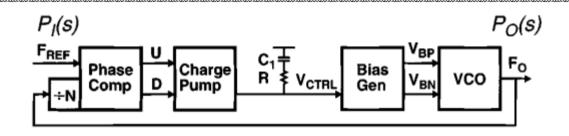
$$\frac{\omega_N}{\omega_{ref}} = I_{CH} * K_{DL} * \frac{1}{C1} \frac{F_{REF}}{\omega_{ref}}$$
$$= x * 2I_D * \frac{C_B}{4 * I_D} * \frac{1}{C1} * \frac{1}{2\pi} = \frac{x}{4\pi} \frac{C_B}{C1}$$

Self-Biased DLL

The loop bandwidth to operating frequency ratio is given by $\omega_N \ x \ C_B$

$$\frac{W}{\omega_{ref}} = \frac{1}{4\pi} \frac{B}{C1}$$

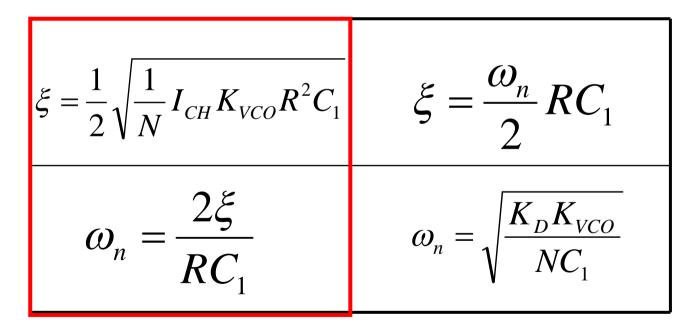
The capacitance ratio determined the loop bandwidth to operating frequency ratio and reduced the process technology sensitivity



Outline

- Motivation
- Self-Biasing Technique
- Differential Buffer Delay
 - Symmetric Load
- Bias Generator
- Self-Biased DLL
 - Zero-offset charge pump
- Self-Biased PLL
 - Feed-forward Zero

Self-Biased PLL



- Phase detector, charge pump, loop filter, bias generator, and VCO, feedback divider
- Loop filter needs one resistor for stability
- Once in lock, the VCO generates output frequency N times larger than input reference
- The PLL can be used to multiply and rebuffer an input clock without adding delay

11/15/2015

• Use the second-order system knowledge to analyze the closed loop response to get the damping factor and natural frequency

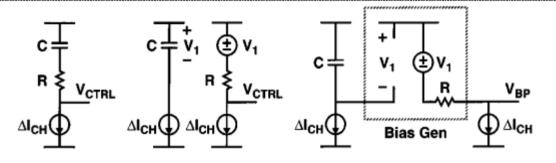
• Make both damping factor and ω_n/ω_{ref} are constant to get no limit on the operating frequency range and so that the jitter performance can be improved

$$\xi = \frac{1}{2} \sqrt{\frac{1}{N} I_{CH} K_{VCO} R^2 C_1}$$

• Constant damping factor = I_{CH} equal to the buffer bias current + R vary inversely proportionally to $\sqrt{buffer bias current}$

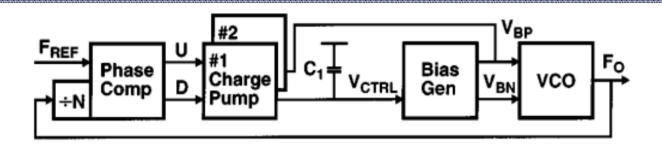
Self-Biased PLL

$$\xi = \frac{\omega_n}{2} RC_1$$


- Constant ξ makes ω_n is proportional to the $\sqrt{buffer bias current}$
- In order to keep ω_n/ω_{ref} constant, the VCO operating frequency should also be proportional to the $\sqrt{buffer bias current}$

• VCO frequency is proportional to Vctrl-Vth which is the square root of I_D , the slope is constant means K_{VCO} is constant. So the reference frequency is proportional to the square root of the buffer bias current

Feed-Forward Zero



- Transformation of the loop filter for the integration of the loop filter resistance
- Make the resistor is proportional to $1/\sqrt{I_{buffer}}$
- diode-connected PMOS with resistance 1/gm, which is inversely proportionally to the

 $\sqrt{buffer bias current}$

Self-Biased PLL

- Voltage drop across capacitor and resistor are generated separately and summed to form the control voltage V_{CTRL}, as long as the same charge pump current applied to each of them
- Bias generator can conveniently implement this voltage source and resistor since it buffers V_{CTRL} to form V_{BP} with finite output resistance
- The self-biased PLL can be completed by adding an additional charge pump current to generate V_{BP}

11/15/2015

Self-Biased PLL

• The operating frequency for an n-stgae VCO is

$$F = \frac{\sqrt{2 * k * I_{D}}}{C_{B}}$$

• VCO gain K_{VCO} is given by

$$K_{VCO} = \frac{k}{C_B}$$

• The charge pump current and loop filter resistor are

$$I_{CH} = x^* (2^* I_D)$$
 $R = \frac{y}{\sqrt{8^* k^* I_D}}$

11/15/2015

Self-Biased PLL

• The damping factor is then given by

$$\xi = \frac{1}{2} \sqrt{\frac{1}{N} I_{CH} K_{VCO} R^2 C_1} = \frac{y}{4} \sqrt{\frac{x}{N}} \sqrt{\frac{C_1}{C_B}}$$

• The loop bandwidth to operating frequency ratio is given by

$$\frac{\omega_n}{\omega_{ref}} = \frac{2\xi}{RC_1} \frac{1}{2\pi F_{ref}} = \frac{\sqrt{xN}}{2\pi} \sqrt{\frac{C_B}{C_1}}$$

- The damping factor is a constant times the square root of the ratio of two capacitances
- The loop bandwidth to operating frequency ratio is also a constant times the square root of the ratio of the same two capacitances
- The loop bandwidth will track operating frequency and sets no constraint on the operating frequency range
- Constant ω_n / ω_{ref} , ξ can be set to minimize jitter accumulation over all operating frequencies

References

- 1. John G. Maneatis, "Low-Jitter Process-Independent DLL and PLL Based On Self-Biased Techniques," in IEEE Journal of Solid-State Circutis, Vol.33, No.11, Nov 1996.
- 2. John G. Maneatis, "Precise Delay Generation Using Coupled Oscillators," in ProQuest Dissertations and Theses, 1994.
- 3. ece.wpi.edu/analog/resources/plljitter.pdf

