A TUTORIAL APPROACH

 TO ANALOG PHASELOCKED LOOPSBy Angsuman Roy

PRESENTATION OUTLINE

[^0]
INTRODUCTION

Basic Structure of a PLL

TERMINOLOGY

Analog PLL (APLL)

- Multiplying circuit (mixer) used for phase detector
- Other components are analog

Digital PLL (DPLL)

- Mixer replaced with XOR gate or phase frequency detector (PFD)
- Other components are unchanged

All Digital
PLL (ADPLL)

- XOR Gate or PFD
- Other components are digital or numerically controlled.

WHY ANALOG PLLS?

Used for RF Circuits

Low Noise

Wide Tuning Range

Many
Adjustable Parameters

APLL BLOCK DIAGRAM

Basic Structure of a PLL

WHAT IS A MIXER?

A mixer takes two input frequencies and outputs their sum and difference from the process of multiplication.

MATH

$$
\begin{aligned}
& V_{1}(t)=A_{1} \cdot \sin \left(2 \pi f_{1} \cdot t\right) \\
& V_{2}(t)=A_{2} \cdot \sin \left(2 \pi f_{2} \cdot t\right) \\
& V_{1}(t) \cdot V_{2}(t)=\sin \left(2 \pi f_{1} \cdot t\right) \cdot \sin \left(2 \pi f_{2} \cdot t\right)
\end{aligned}
$$

Trigonometric Identity: $\sin (a) \cdot \sin (b)=\frac{1}{2}[\cos (a-b)-\cos (a+b)]$

$$
V_{1}(t) \cdot V_{2}(t)=\frac{1}{2}\left(A_{1} \cdot A_{2}\right) \cdot\left[\cos \left(2 \pi\left(f_{1}-f_{2}\right) t\right)-\cos \left(2 \pi\left(f_{1}+f_{2}\right) t\right)\right]
$$

CONCEPTUAL DIAGRAM

MIXER DESIGN:4 QUADRANT MULTIPLIER

4 QUADRANT MULTIPLIER DEVICE SIZES

4 QUADRANT MULTIPLIER GAIN

AC OPERATION OF THE MIXER

TIME DOMAIN VIEW OF INPUTS/OUTPUT

FFT OF IF OUTPUT

GAIN AND NOISE

4 QUADRANT MULTIPLIER GAIN

fixed bias.

4 QUADRANT MULTIPLIER GAIN

Linear only for small signals

4 QUADRANT MULTIPLIER GAIN

Changed sweep and step settings to show linear region better

LET'S MULTIPLY

INCREASING GAIN

Increasing the value of these resistors increases gain but reduces load driving ability.

REPLACING RESISTORS

MIXER AS PHASE DETECTOR

When both RF and LO frequencies are the same, the mixer operates as a phase detector.

Simulation test set-up

NO PHASE DIFFERENCE

IF output is rectified at twice the RF/LO frequency. Averaging this will result in some DC value.

90 DEGREE PHASE DIFFERENCE

IF output appears to have zero average value.

250 mV V(rf1)-V(rf2)
$200 \mathrm{mV}-$
$150 \mathrm{mv}-$
$100 \mathrm{mV}-$
$50 \mathrm{mV}-$
0mv-
$-50 \mathrm{mV}-$
$-100 \mathrm{mv}-$
$-150 \mathrm{mv}-$
$-200 \mathrm{mV}-$
$\begin{array}{rllllllllll}250 \mathrm{mV} \\ 12.74 \mu \mathrm{~s} & 12.76 \mu \mathrm{~s} & 12.78 \mu \mathrm{~s} & 12.80 \mu \mathrm{~s} \quad 12.82 \mu \mathrm{~s} \quad 12.84 \mu \mathrm{~s} \quad 12.86 \mu \mathrm{~s} \quad 12.88 \mu \mathrm{~s} \quad 12.90 \mu \mathrm{~s} \quad 12.92 \mu \mathrm{~s} \quad 12.94 \mu \mathrm{~s} \quad 12.96 \mu \mathrm{~s} \quad 12.98 \mu \mathrm{~s} \quad 13.00 \mu \mathrm{~s} \quad 13.02 \mu \mathrm{~s}\end{array}$
There is a relationship between average IF voltage and phase between LO and RF.

FILTERING THE IF OUTPUT

IF OUTPUT AS A FUNCTION OF PHASE

ZOOMED IN

Output Voltage as a Function of Phase

VCO DESIGN

Many options to choose from
Ring oscillators

- Relaxation oscillators
- Varactor-tuned LC oscillators

Requirements are
Relatively linear
Has the tuning range needed for the intended application

DIFFERENTIAL RING OSCILLATOR

Same idea as a ring oscillator made from inverters but with differential amplifiers.

BREAKING IT DOWN

OUTPUT

Problem: Odd output waveform shape

Problem: Output does not swing to full logic levels

LEVEL-SHIFTING

INVERTER STRING

Small inverter for low capacitive loading

Big inverter for

 load driving ability

Inverter sizes are
PMOS Width/NMOS Width

RESULT

FREQUENCY TESTING

Frequency as a Function of Current

VOLTAGE TO CURRENT CONVERTER

This MOSFET and resistor serves as a rudimentary voltage to current converter.

FREQUENCY TESTING

Frequency as a Function of Voltage

INTERFACING MIXER TO VCO

CLOSING THE LOOP

Loop filter with buffer to isolate effects from mixer output impedance.

Mixer needs proper biasing and input levels.

OUTPUT

LOCKED OUTPUT AT 300 MHZ

Edges line up

USEFUL EQUATIONS

$$
\begin{aligned}
& K_{F}=\frac{1}{1+s R C} \square \text { Loop filter transfer function (simple } 1^{\text {st }} \text { order lowpass) } \\
& H(s)\left.=\frac{\varphi L O}{\varphi R F}=\frac{K_{P D} K_{V C O} \cdot \frac{1}{1+s R C}}{s+\frac{1}{N} K_{P D} K_{V C O} \cdot \frac{1}{1+s R C}}\right] \text { System transfer function (2 } 2^{\text {nd }} \text { order) } \\
& \omega_{n}=\sqrt{\frac{K_{P D} K_{V C O}}{N \cdot R C}} \quad \text { Natural frequency } \\
& \zeta=\frac{1}{2 R C \omega_{n}}
\end{aligned} \quad \begin{aligned}
& \begin{array}{l}
\text { N is for the divider ratio in } \\
\text { frequency synthesis examples. If } \\
\text { there is no divider use } \mathrm{N}=1 .
\end{array} \\
& \hline
\end{aligned}
$$

OVERDAMPED CASE

Overdamped PLL not locking on a single frequency

FFT of output shows two peaks
at 300 MHz and a noisy one at 291 MHz .

The difference is the natural frequency.

UNDERDAMPED CASE

VinVCO voltage shows some oscillation and ripple voltage.

FFT of output shows the correct peak at 300 MHz but there is significant phase noise.

CRITICALLY DAMPED CASE

APPLICATION: FREQUENCY SYNTHESIS

Stable oscillator topologies don't scale well to high frequencies.
" Quartz (32 KHz-160 MHz)

- Rubidium (typically 10 MHz)
- Silicon MEMS (1 MHz-140 MHz)

A PLL locked to a stable reference can generate a stable high frequency oscillator.

- Quartz (10 PPM)
- Silicon MEMS (100 PPM)
- Rubidium (0.0001 PPM or 0.1 PPB)

FREQUENCY DIVIDER

Each stage divides by 2

FREQUENCY MULTIPLIER SCHEMATIC

OUTPUT

256 MHz Output

32 MHz Input

APPLICATIONS: FM DEMODULATION

INPUTS AND OUTPUTS

APPLICATIONS: FSK DEMODULATION

REFERENCES

- The Art of Electronics by Horowitz and Hill
- MT-080 Mixers and Modulators by Analog Devices
- MT-086 Fundamentals of PLLs by Analog Devices

Practical Tips for PLL Design by Dennis Fischette

- FM \& PM Demodulation from The Scot's Guide to Electronics
- Mixer Basics Primer by Christopher Marki

[^0]: Introduction and Terminology
 Analog PLLs
 Phase Detector (Mixer)
 Voltage-Controlled Oscillator
 Low-Pass Filter and Damping
 Applications

 - Frequency Synthesis
 - FM Demodulation

