A TUTORIAL APPROACH TO ANALOG PHASE-LOCKED LOOPS

By Angsuman Roy

PRESENTATION OUTLINE

- Introduction and Terminology
- Analog PLLs
- Phase Detector (Mixer)
- Voltage-Controlled Oscillator
- Low-Pass Filter and Damping
- Applications
 - Frequency Synthesis
 - FM Demodulation

INTRODUCTION

TERMINOLOGY

WHY ANALOG PLLS?

Used for RF Circuits

Wide Tuning Range

Low Noise

Many Adjustable Parameters

APLL BLOCK DIAGRAM

WHAT IS A MIXER?

A mixer takes two input frequencies and outputs their sum and difference from the process of multiplication.

MATH

 $V_1(t) = A_1 \cdot \sin(2\pi f_1 \cdot t)$ $V_2(t) = A_2 \cdot \sin(2\pi f_2 \cdot t)$ $V_1(t) \cdot V_2(t) = \sin(2\pi f_1 \cdot t) \cdot \sin(2\pi f_2 \cdot t)$

Trigonometric Identity:
$$sin(a) \cdot sin(b) = \frac{1}{2} [cos(a - b) - cos(a + b)]$$

$$V_{1}(t) \cdot V_{2}(t) = \frac{1}{2} (A_{1} \cdot A_{2}) \cdot [\cos(2\pi(f_{1} - f_{2})t) - \cos(2\pi(f_{1} + f_{2})t)]$$

Difference Sum

CONCEPTUAL DIAGRAM

MIXER DESIGN:4 QUADRANT MULTIPLIER

4 QUADRANT MULTIPLIER DEVICE SIZES

AC OPERATION OF THE MIXER

TIME DOMAIN VIEW OF INPUTS/OUTPUT

FFT OF IF OUTPUT

GAIN AND NOISE

LET'S MULTIPLY

INCREASING GAIN

Increasing the value of these resistors increases gain but reduces load driving ability.

Increasing the bias voltage increases gain and allows for variable gain.

REPLACING RESISTORS

MIXER AS PHASE DETECTOR

NO PHASE DIFFERENCE

90 DEGREE PHASE DIFFERENCE

FILTERING THE IF OUTPUT

IF OUTPUT AS A FUNCTION OF PHASE

ZOOMED IN

VCO DESIGN

Many options to choose from

- Ring oscillators
- Relaxation oscillators
- Varactor-tuned LC oscillators

Requirements are

- Relatively linear
- Has the tuning range needed for the intended application

DIFFERENTIAL RING OSCILLATOR

BREAKING IT DOWN

OUTPUT

V(n009

Problem: Odd output waveform shape

Problem: Output does not swing to full logic levels

LEVEL-SHIFTING

INVERTER STRING

PMOS Width/NMOS Width

RESULT

FREQUENCY TESTING

VOLTAGE TO CURRENT CONVERTER

This MOSFET and resistor serves as a rudimentary voltage to current converter.

FREQUENCY TESTING

INTERFACING MIXER TO VCO

Active load for differential to single ended conversion.

Mixer output is differential while VCO input is single-ended.

CLOSING THE LOOP

OUTPUT

LOCKED OUTPUT AT 300 MHZ

USEFUL EQUATIONS

OVERDAMPED CASE

UNDERDAMPED CASE

CRITICALLY DAMPED CASE

APPLICATION: FREQUENCY SYNTHESIS

- Stable oscillator topologies don't scale well to high frequencies.
 - Quartz (32 KHz-160 MHz)
 - Rubidium (typically 10 MHz)
 - Silicon MEMS (1 MHz-140 MHz)
- A PLL locked to a stable reference can generate a stable high frequency oscillator.
 - Quartz (10 PPM)
 - Silicon MEMS (100 PPM)
 - Rubidium (0.0001 PPM or 0.1 PPB)

FREQUENCY DIVIDER

FREQUENCY MULTIPLIER SCHEMATIC

OUTPUT

256 MHz Output

APPLICATIONS: FM DEMODULATION

INPUTS AND OUTPUTS

APPLICATIONS: FSK DEMODULATION

REFERENCES

- The Art of Electronics by Horowitz and Hill
- MT-080 Mixers and Modulators by Analog Devices
- MT-086 Fundamentals of PLLs by Analog Devices
- Practical Tips for PLL Design by Dennis Fischette
- FM & PM Demodulation from The Scot's Guide to Electronics
- Mixer Basics Primer by Christopher Marki