Practice Midterm Exam - EE 420 Engineering Electronics II and ECG 620 Analog IC Design University of Nevada, Las Vegas

Name: \qquad

- Open book and closed notes.
- No scratch paper.
- Put boxes around your answers (only!)
- The exam's length is 1 hour and 15 minutes. Stop when told to stop.
- Please use the following parameters in your exam unless specified otherwise.

Long-channel MOSFET parameters for general analog design in this book $V D D=5 \mathrm{~V}$ and a scale factor of $\mathbf{1} \mu \mathrm{m}$ (scale $=1 \mathrm{e}-6$)			
Parameter	NMOS	PMOS	Comments
Bias current, I_{D}	$20 \mu \mathrm{~A}$	$20 \mu \mathrm{~A}$	Approximate
W/L	10/2	30/2	Selected based on I_{D} and $V_{D S, s a t}$
$\begin{gathered} \hline V_{D S, s a t} \text { and } \\ V_{S D, \text { sat }} \end{gathered}$	250 mV	250 mV	For sizes listed
$V_{G S}$ and $V_{S G}$	1.05 V	1.15 V	No body effect
$V_{\text {THN }}$ and $V_{\text {THP }}$	800 mV	900 mV	Typical
	$-1 \mathrm{mV} / \mathrm{C}^{\circ}$	$-1.4 \mathrm{mV} / \mathrm{C}^{\circ}$	Change with temperature
$K P_{n}$ and $K P_{p}$	$120 \mu \mathrm{~A} / \mathrm{V}^{2}$	$40 \mu \mathrm{~A} / \mathrm{V}^{2}$	$t_{O X}=200 \AA$
	$1.75 \mathrm{fF} / \mathrm{mm}^{2}$	$1.75 \mathrm{fF} / \mathrm{mm}^{2}$	
$C_{\text {Oxn }}$ and $C_{\text {oxp }}$	35 fF	105 fF	PMOS is three times wider
$C_{g s n}$ and $C_{s g p}$	23.3 fF	70 fF	
$C_{g d n}$ and $C_{d g p}$	2 fF	6 fF	
$g_{m n}$ and $g_{m p}$	$150 \mu \mathrm{~A} / \mathrm{V}$	$150 \mu \mathrm{~A} / \mathrm{V}$	At $I_{D}=20 \mu \mathrm{~A}$
$r_{\text {on }}$ and $r_{O p}$	$5 \mathrm{M} \Omega$	$4 \mathrm{M} \Omega$	Approximate at $I_{D}=20 \mu \mathrm{~A}$
$g_{m n} r_{o n}$ and $g_{m p} r_{o p}$	750 V/V	$600 \mathrm{~V} / \mathrm{V}$	Open circuit gain
λ_{n} and λ_{p}	$0.01 \mathrm{~V}^{-1}$	$0.0125 \mathrm{~V}^{-1}$	At $L=2$
$f_{T n}$ and $f_{T p}$	900 MHz	300 MHz	For $L=2, f_{T}$ goes up if $L=1$

1. Plot the current that flows in Vin against Vin for Vin varying between -2 and 2 V . (20 points)

2. Calculate the DC voltages and currents in the following circuit. Show your work for credit. Please don't forget to put boxes around your answers. (20 points)

3. Estimate the AC voltages and currents that flow in the following circuit. As always, show your work. Again, as always, put boxes around your answers. Note that you've already calculated the DC operating conditions in problem 2. (20 points)

4. Determine the DC currents and voltages (numbers) in the following circuit. Then estimate the AC current that flows in Vt (again, a number). As always show your work and put boxes around your answers only! (20 points)

5. Estimate the DC current (a number) that flows in the following circuit. As always show your work and put a box around your answer. (20 points)

